Ligand Redox Non-Innocence in [CoIII(TAML)]0/- Complexes Affects Nitrene Formation

Introduction
- Metal-nitrene (M=NR) species are excellent intermediates for direct olefin aziridination or C-H amination.1,2
- Generation of such species from cheap and sustainable reagents, preferably directly from amines, is desired.
- This requires characterisation of the proposed key catalytically active (radical) nitrene intermediates.
- The cobalt-TAML (TAML = Tetra-Amido Macroyclic Ligand) platform is selected to study this.
- Ligand redox non-innocence of [Co(TAML)] complexes is questioned since 2006.
- No [Co(TAML)(NR)] species have been described up to date. Potential redox non-innocence of the TAML scaffold on cobalt and formation of nitrene adducts were therefore investigated.

Research questions
1) Is the ligand in [Co(TAML)] complexes redox non-innocent?
2) Can the [Co(TAML)] platform be used to generate catalytically competent cobalt-nitrene (radical) species?
3) What is the influence of the (ligand) oxidation state on the (electronic) structure of the targeted nitrene (radical) species?

References

Conclusions and outlook
- Oxidation of [CoII(TAMLIII)+] to [CoII(TAMLIII)+] is ligand-centered: TAML on cobalt is redox active.
- Electronic structure of [CoII(TAMLIII)+] is best described as intermediate spin CoII antiferromagnetically coupled to a ligand-centered radical.
- Nitrene-radical formation occurs through double or single ligand-to-substrate single-electron transfer from [CoII(TAMLIII)+] or [CoII(TAMLIII)+], respectively.
- Follow-up work focusses on catalytic activity of nitrene-radical species in aziridination reactions.